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/
The optional sampling theorem for marti n9áles indexed by a par-

tiafly ordered set Is true If the Index set is directed. However, the

corresponding result for subnartingales indexed by a partially ordered

set is generally false. In this paper,(~e completely characterize the

class of stopping times for which the optional sampling theorem is true

for all uniformly bounded su~nar ngales indexed by countable partially

ordered sets. By assi.aning a c itiona l independence property, we show

that when the Index set is R2 the optional sampl ing theorem is true for

all uniformly bounded submartingales and all stopping times. This con-

ditional independence property is satisfied in cases where the sub-

martingales and stopping times are measurable with respect to the two-

parameter Wiener process. A count~~ xample shows that the optional sampling

resu l t Is false for R en r(_~2 even if the conditional independence
property Is sati sf1 ed. ~~
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OPTIONAL SAMPLING OF SUBMARTINGALES INDEXED BY PARTIALLY ORDERED SETS

1. IntroductIon

Bochner (1955) formulated the martingal e theory of Doob (1953) for 
S

S random functions on a directed1 index set with the Intention of clarifying

and simplifying several probabilistic concepts In terms of martingale

concepts. With this motivation he defined martingales, submartlngales

I I and stopping times in the general context of a directed Index set and he

stated general versions of the martingale convergence theorem and the

optional sampling theorem. Since that time several authors have studied

these conjectures and found that the general case of directed indices re-

quires additional hypotheses to obtain generalized versions of the results

for linearly ordered index sets. On the question of martingale conver-

gence, Krickeberg (1956), Helms (1958) and Chow (1960) have obtained

generalized versions of Doob’s (1953) results for linearly ordered index

sets. See also the monograph of Hayes and Pauc (1970). More recently,

Gut (1976) and GabrIel (1977) have studied convergence of martingales
Indexed by directed sets and applied these results to investigate the law

~ I of large numbers for multiparameter stochastic processes.

5 Using a restricted definition of stopping time, Chow (1960) proved

that the optional sampl ing theorem was true for martlngales in the gen-

eral case of directed index sets. Kurtz (1977) removed Chow’s restrI~-

tions on the stopping time and extended the results to the case when the —

Index set is a topological lattice. In addition to proving an optional

American Mathematical Society, 1970, subject classifications. Pr imary
60G40; Secondary 60G45.
Kay ~~rds and phrases. Optional sampling, submartingale, reachable stop-
ping time, optimal stopping problem, partially ordered Index set.
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sampling theorem for martingales with a directed index set, Chow (1960)

also showed that the analogous result for submartingales was false even

for very simple examples. Nevertheless, the optional sampling theorem is

true for submartingales with a partially ordered index set if suitable

assumptions are made. Haggstroin (1966), extending the work of Snell (1952)

on martingale systems theorems and optimal stopping problems, defined

submartingales indexed by a tree,2 a special type of partially ordered

set which is not directed. In addition, he proved a version of the

optional sampling theorem for a special class of stopping times called

control variables • 2

In the first part of this paper (Section 2) we consider the optional

sampling theorem for submartingales indexed by countable (but otherwise

general) partially ordered sets. We define the concept of reachability~
for pairs of stopping times and we reformulate Haggstrom’s problem for

general partially ordered time sets. The concept of reachable stopping

times generalizes Haggstrom ’s notion of control variable. We show that

if ~ stopping time ~r is reachable from a stopping time a, then the op-

tional sampling theorem is true for all submartinga les satisfying a

uniform bound. Conversely, we show that if the optional sampling

theorem is true for the pair r,a of stopping times and for any uniformly

bounded submartingale, then ~r must be reachable from a. Thus, we obtain

a complete characterization of the case in which the optional sainpli,i’g

theorem Is true for general submartingales.

In the second part (Section 3) of this paper we assume that the in-

creasing family of a-fields satisfies a special conditional independence

- . 5 -~~~ _.-~~~ -. 5 ~~~~~~~ 5__ _ _ __  .5 ~~~~~-rn~~~~~~~~~~~~~ — ~~~~~~~~~~~~ --_5.
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5’ property that can be defined when the index set is such that any two

elements have a greatest lower bound. This is a straightforward genera l-
S 

zation of the conditional Independence property that Cairol i and Walsh

(1975) defIne for the index set ~~~ Assuming this conditional in-

dependence hypothesis, we can show that if the index set T is a tree with

respect to its order relation ~ and If a,r are stopping times with a~ r,

then t is always reachable from a. Likewise, assuming the conditional in-

dependence property, we can show that if a and t are stopping times on

and as-; then t is reachable from a. Consequently, the optional sampling

theorem Is true for all stopping times and all uniformly bounded sub-

martingales defined on either a tree or on Z2, when the conditional in-
dependence property is satisfied. It is a simple matter to extend the

optional sampling theorem for the case of the index set Z2 to the case of

right continuous inartlngales defined on R2. A counterexample reveals

that the optional sampling theorem Is not true for Z~ or R~’ when n>2.

- .-S.S- —— ~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _S.___ 
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~ 2. Optional Sampling for Submartingales Indexed by Partially Ordered Sets

2.1 NotatIon, Conventions and Basic Definitions

We will let I denote the partially ordered index set in this paper

and except for one case in Section 3, we will always assume that I Is

countable. We will use s to denote both the partial order relation on T

- 
S 

and the usual linear order relation on the set R of real numbers, but

there should be no confusion as to which case is meant. Let (cz,F,P) denote

the underlying probability space and {r(t) : tc T} a family of sub a-fields

of F Indexed by T. We will always assume that F and each r(t) are com-

plete with respect to the probability measure P. Following convention,

we omit ~a.s.” from all equalities and inequalities between random func-

tions, although we implicitly assume that these relationships only hold

almost surely.

It is straightforward to extend the usual definitions of increasing

• family, submartingale and stopping time to the case of a partially ordered
index set. Nevertheless, we assemble these definitions here for the sake

of completeness. The family (7(t) : tET } Is said to be increasing with S

respect to s if ss t Impl ies that F (s)c .F(t). A mapping X : Tx~2-,.R Is

adapted to the family {P(t) : til) if CAI+X(t,W) is 7(t)-measurable for

each t In T. To be concise, let us denote the random variable u~~X(t,w)j by X(t). A mapping X Is uniformly bounded if there exists a real-valued 
S

random variable with finite expectation E(X~) such that IX (t) I s X~ for
I all t. A submartingale X with respect to the Increasing family (7(t) : t1T}

Is a map X : Tx~2.R such that X is adapted to {F(t) : tET}, such that

4 1  
S
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the expectation E(IX(t)I) is finite for each t and such that the condi-

tional expectation satisfies
S..-

(2.1) X(s) s E(X(.t)IF(s))

whenever sst. Similarly, a martingale is a submartingale for which

equality holds In (2.1). Note that in this paper we will always assume

that submartingales are uniformly bounded.

A stopping time t with respect to an increasing family (7(t) : t (T}

Is a mapping t : ci+T which satisfies the measurability property

{t z t }c F ( t)  for all t. Corresponding to each stopping time r there is

a a—field denoted by 7(r) and defined to be the a—field of sets A in

P such that An {r~~t} lies In F(t) for each t. If a is a stopping time,

let ST (a) denote the collection of all stopping times r such that air .

The optional sampling theorem gives conditions under which

(2.2) X(a) ‘ E(X(t)IF (a))

for a given t In ST(a) and for a given submartingale X. Let 05(o) denote

the collection of all r in 52’(a) such that (2.2) is true for all uniformly

bounded submartingales X. If the Index set is the set of integers ordered

as usual, then standard theorems (see Neveu (1975)) imply that sT (a) ~‘ os (a) .

As Chow (1960) showed with a simple counterexample, this is not true for

ge~~iil partially ordered Index sets , and in general one only has
t~ C ) C S T ( a) . In the remainder of this section we are going to characterize

- 

• 
05 (a)  In terms of the concept of reachability which we discuss next. In

Section 3 we will s how that in certain special cases In which I Is not 

_~~~~~ ~~~~~~~~~~~~~~~S
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linearly ordered we can still have os (a) Z S T(o) .

2.2 Reachability

Throughout the following definitions and discussions let us assume

that the partially ordered index set, the underlying probability space and

-
S . 

the increasing family of a-fields are fixed. Thus, for example, “stop- -
~

ping timeN wi ll mean “stopping time on I with respect to the Increasing

family (7(t) : tcT}.” 
S

DefInition 1

A decision function • is a mapping ~ : Ixt2-’ T with the following

properties:

(2.3) t � $(t,w)

for all t in I, and almost all u~ in ~2. Let ~(t) denote the random function

w-~’$(t,uO. Then we require that

- 

5 
(2.4) {~(t) — sJ ( 7(t)

for all t,s In I. Let D denote the collection of all decision functions .

Note that D depends on I,’ and -( F ( t)  : tcl}. For any positive integer

k let ~k denote k applications of the random function 
~~~
. That is, is

defined recursively by

(2.5) ,k+1(t,~)

%àierewe define $°(t,w) ‘t for all t and w. Al so, for a random function

a : ~2.T let s(a) denote the random function w.~(a(c~),w). Thus,

,(,k(t)) .,
k(,(t)). The concept of a decision function is central to our 

~~. ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ——— . ~~~ • -
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development of the notion of reachability. Having defined decision func-

tions, we can define several types of reachabi l ity as fol lows. In each

of the following definitions assume that a is a stopping time and that r

is a mapping t : ~2+T such that (r= t} is F-measurable for each t in I.

Definition 2

We say that t Is finitely reachable from a if there is a decision

function $ in D and an integer k such that

-(2 6) $k(a) r

Let PR( a)  denote the collection of all r which are finitely reachable 
S

- 

fram a. 
-

Definition 3

We say that r is strongly reachable from a if there is a decision S

function- f in P such that the limi t

(2.7) Urn •
k(0) -

exists almost surely and is equal to r. The l imit (2.7) is interpreted

In terms of the discrete topology on I. That is, for almost all w we have —

lim ~
k(a(w),w)_t if and only if $~(a(w),w)’t for some Integer n. Let

SR(a) denote the collection of all t which are strongly reachable from a.

Definition 4

We say that r Is reachable from a if there is a sequence {rk} ~f

in PR(a)  such that

N

_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — ~~~~~~~~~~ .5 
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(2.8) u r n  p~r~ ~t) — 0

Let R(a) denote the collection of all -r which are reachabl e from a.
In general one has the following relationships between the collec-

tions of random functions we have j ust defined: -

(2.9) ~~(a) c s4q (a) c R (a)  OS(a) c s~r (a)

In particular, note that the relationship R ( a)  = 05(a) characterizes those
pairs of stopping times for which the optional sampling theorem is true 

- 

-

for uniformly bounded submartingales . In the present subsection we will

show that F R ( C) C S R ( O ) C R ( 0) c O S ( 0) C S T ( 0) , and in the next subsection 2.2
we will show the converse relation OS(a) c -R( a) . First we prove the fol-
lowing simple theorem.

Theorem i S

Suppose that a Is a stopping time. Then the following relationships
are true:

(2.10) P R( a)  c SR(q)  R( a)  S T (a)

• - Proof

We divide the proof Into four steps in which we prove (i) FR (a) -c S T(o)
(11) PR(a)cSR(a), ( l i i )  SR( a) C R(u)  and f i n a l l y  ( i v )  R ( a) c S T ( a )  to obtain
(2.10).

(1) We will show that for $ cD and -r c ST(a)  we always have •(r) E ST(a) .

Having shown this, one easi ly deduces by induction that ~k(0) ~3T(a) for
any integer k �O and hence that F R ( a) c S T ( a) . It is clear that for $ D ,

S 
.. - 

— —-s-- -- m ~~~~~~~~~~~~~~~ — ~~~~~~~
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rcST(o) we always have a�~ (-r), SO it only remains to show that the

measurability condition {$ ( t) s } E 7 ( t )  is satisfied. Since r�$ (r) a.s.,

for each t the event

(2.11) {$(t) s t} - {$(t) t, t s t }

has zero probability. Note that the event {q(-r ) = t, -r � t} can be written

as -

(2.12) u{{$(s) t} n (-r s} : s�t}

Since $ is a decision function and since r -Is a stopping time the events

- {~(s) t} and {r s} are F(s)-measurable and hence 7(t)-measurable for

all s�t. It follows from (2.12) that {~ (t) t, r�- t} is 7(t)-measurable,

and from the fact that (2.11) has zero probability and that 7(t) -Is

complete it follows that {~(r) = t} is 7(t)-measurable. Hence, c~(r) is

a member of ST(a) .

(ii) Suppose that $ e D , a is a stopping time and k is a nonnegative

Integer. Define ~
p : Tx~l.I as

(2.13) ~(t) 
= t if •

k(0) = t

*(t) •(t) If $k(a)*t

from (I) we see that •
k(a) Is a stopping time and hence the events {~k(0) t}

and {~
k(0) ~ t} are 7(t)-measurable. It follows easily that ~p satisfies

the measurability condition (2.4). The condition (2.3) is easy to see

also, and thus, ~, Is a decision function. Note that for each integer

j  � 0, we have *
i+1(a) $~

‘1(a) -If *~(a)  ~ ~~~ If ~J(0) = $k(a) then

____________-- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
S—S
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It is easy to see from the definition of ‘I.’ that ~,m(0) $k (a ) for all m �j .

Thus, if j�k , then *
i(a)_$ k(a) Consequently, u r n  ~j~ (a) exists and

k kequals $ (a). Hence, $ ( a ) c S R ( a) .

(iii) This is easy to see. If r € S R ( ~~) ,  then there is a decision

function $ such that u r n  4~(a)—-r. By taking rk 4~
(a) in (2.8) , we see

k-.’.
that re R (a) .

(iv) Suppose that (2.8) holds for some -r In RC a) . If A denotes the

set syimnetric difference, then

— (2.14) (r t} A {-rk zt} ~ {-rst}

and from (2.8) it follows that

(2.15) u r n  P({-t t} A {rk t}) 0
k-”.

Since Tk e P R ( a) c S T ( c~) ,  the event {-rk
a t} Is F(t)-rneasurable for each k.

The completeness of 7(t) and (2.15) imply that {t = t} is also F(t)—measurable.

Similarly, O �t k a.s. for all k implies that a� r a.s., and thus, r c S1’(a).

The inclusion relations in (2.10) generally cannot be replaced by

equalitIes. The following simple examples illustrate this fact .

Example 1. P R(a) ~~ SR (a)

Let I denote the set of positive Integers ordered in the usual way.

Let -r be any random function taking values In I such that P(T t)>0 for

all t. Define p(t) as the a-field generated by {r s} for s�t. Let a 1 .

Then with respect to { F ( t )  : tel }, a is a stopping time and -r is strongly

reachable from a but not finitely reachable from a. 

—5- -—-5--- -—- —5-- - -  — - 5  ~-—- - - —5- -— -5 S S - - --~-— -.  S
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Exampl e 2. SR(a) s R(o )
_ 

Let 1 {O} u (-~ 
: n� 1} and order I in the usual way. Let r be any

random function taking values in T-{0} such that P(-r t)>0 for all txO .

-I Define p(t) as the a—field generated by {-r = s} for s ~ t, and let a = 0. In

this case 7(0) Is the trivial a—field and any decision function •(t) is

almost surely constant at t—0. Thus, we ~m~st have $(a) =.~~ for some n and

there is always a non—zero probability P(T<-~) that $
k(a)�r for all k.

Therefore, -r Is not strongly reachable from a. However, by choosing a

I decision function with •(o) a -h. for sufficiently large n we can make the
probability that $

k(O)~~l for some k arbitrarily small , and thus, -r Is

reachable from a.

Example 3. R( a)� ST(a)

S 
We present an example from Chow (1960) to show that OS(a):ST(a) by

constructing a stopping time -r in S T(a)  which does not belong to OS(a).

In the next theorem we will show that R(a)cOS(a) and thus, this stopping -

time t cannot belong to R(a). Unlike the previous examples which used

S l inearly ordered Index sets, to show R(a)~ e S T(a )  we must use a partially

ordered indfx set. Let I consist of three points a, b, c wi th the order

relatIons a�b and a�c . Let r be a random function taking only the values

b and c each with probability one-half. Let 7(t) be the a-field generated

by -r— t for each t in I. Then 7(a) is the trivial a—field, and F (b) S F(c).

S 

If t— b or t~~c, define X(t)
.- i if tar and X (t)— -1 if t r .  Let X(a)= 0.

— Then E ( X ( b ) I F ( a ) ) a E ( x ( c ) l P ( a ) ) — X ( a )  and X Is a uniformly bounded martin-

gale on I. However, E(X(r)JP(a))—-1 c X(a) and hence • r~’ 05(a) .

In special cases we can have some equalities in (2.10). For example,

- 5 5  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . r ~:.. ~~~~~



the argument of example 3 Is easily extended to show that R ( c T ) a S T ( a )  in

case T,~ is linearly ordered. In Theorem 3 we will show that S R ( a) = R ( a )

if the index set is a special type of partially ordered set called a tree.

S In subsection 2.3 we will give a more general condition for the equality

t SR(a)  ‘R (a) .  Note that FR(a ) = S R ( a )  = R (a )  whenever the index set is

finite.
~~~~ .

Intuitively, t is reachable from a -if there -Is a finite sequence of

decisions which reaches r from a with arbitrarily large probability. The

sequence is {~~(a)  : 0sj�k} and the decisions $~(a) must be nondecreasing

with respect to the partial order (2.3) and each decision $~~
1(a) must be

measurable with respect to the previous decision $~(a)  as required in

(2.4 ). -Given this definition Of reachability, it Is not surprising that

the optional sampling theorem is true for reachable pairs of stopping

times. Indeed, one merely appl ies the resul t for submarti ngales indexed

by intecers as we now show.

Theorem 2

Suppose that a Is a stopping time. Then the following relationship

is true:

(2.16) R(a) c 03(a)

Proof

Suppose that X is a submartingale uniformly bounded by X~, and let

$ be a decision function. Suppose that A is an event in 7(a). Consider

E(X($(a))lA ) and rewrite it as

~ 

-~~
,—S-— ,S—

~~~~ -~~~——— - -C- S
~ 
—

~ 
—-

~~~~~~~

C—
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t 

- (2.17) 
~ s~t 

E(X(t)l{a(s)_t~~{aas~~A
)

Since the event (4 (s)  a t} n {a= s}n A is F(s)-measurabl e and since X is

a submartingale with respect to {F(t) : tE T}, we must have

(2.18) E(X(t)l{$(s)_t~~{a_$~~A
) 
~ 
E(X(s)1{$(s)at~~{~~$~~A

)

for s�t. Substituting this expression in (2.17) and sunining over t gives
S 

(2.19) Z

which is equal to E(X(a)1A). Thus, we have shown that

(2.20) E(X($(a))Ir(a)) � X(a)

Applying the principle of mathematical induction , it follows that (2.20)

remains true If $k(a) replaces $ (a) . Consequently, we have F R ( a) c o s ( a) .
Applying the above result to proving the theorem is straightforward.

Let {~
rk} be a sequence in ~~(a) which converges to r in the sense of (2.8).

Rewrite X(rk) as

(2.21) X (t
k
) X (T) + (X(T k)~~X(T))1

and note that from our previous resul t we have

(2.22) E ( X ( - r k ) I F ( a ) ) � X ( a )

- 

- 

for each k. Substituting the equality relation (2.21) Into (2.22) gives

for each k the inequality

L ~~~~~~~~~~~~~~~~ ___________________  ____________  •~~~~~~~~~~_
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(2.23) E(X(t)~F(a)) + E((X(Tk).X(r))1T,,.~ 
)IF(a) ) � X(a)

k

By assumption IX(-rk) -X (r)J is uniformly bounded by 2X ’. Since P(-r
~

u - r k).~
O

as k+c., it follows that

(2.24) u r n  E((X(rk)_X(-r))1 17(a)) a
k-.—

Applying (2.24) to (2.23) gives the desired result.

Before proceeding, let us discuss the relationship 0f reachability

to Haggstrom’s control variables. Haggstrom (1966) considered a special

— type of partially ordered index set, called a tree, and a special type of
stopping time which he called a control variable. A tree T,s is a par-

tially ordered set which consists of finite sequences (t1~-t2~....t~) where
are elements of some abstract set which we leave unspecified. The set

I must have the property that if (t1.t2~...~t~) lies in T, then so does
(t 11t2,...,t~) for each k, 1�ksn. The partial order ~ on I is defined

so that ss t for t~ sequences t— (t1~t2~...~t~) and 5= (S 1~
52 ) ••~~

5m)

if and only I-f m �n and s,1 .t,~ for each -t , l~~~i~~~m. P~ssociated with I

is an Increasing family which we denote by (7(t) : t-c T} as before. A

control variable r is a random function t : Q—~~T with the property that

for each n� -1, the events ( t s r}  and ~~~~~~~~~~~~~~~~~~ are 7(t)—

measurable for t-  (t11t2.....t~). In addition, inc lude the empty sequence

e Inland assume that the events (o -r } and {(t1)�t}  are 7(o)-measurable

for each sequence of the form (t1) -In T. The following proposition shows

that Haggstro~n’ s control variables are equivalent to random functions
reachable from the constant stopping time a o  in our formulation.

- 
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Theorem 3

Suppose that T,� Is a countable tree and let -r : ~2-~T be a random

5 functIon. Then -r is a control variabl e if and only if it is reachable

from the constant stopping time a a o .  Moreover, in this case SR (a)=R (a). S

Proof

Suppose first that -r is a control variable. Then for each t~ (t 1 t2~...1t~).

in I define s(t) as

(2.25 ) $(t) :(t1,t2,...,t~,t~~1)

if ~~~~~~~~~~~~~~~~~ and

(2. 26) $(t) a

If ~~~~~~~~~~~~~~~~ -for any ~~~ Note that since T,~ is a tree,
the events {(ti~

t2~•••~
tn,tn+i)�r} are disjoint for different t,~ 1 and

hence, $ is well-defined. To see that $ is a decision function as defined

In Section 2, we must check that (2.3) and (2.4) are satisfied. Property

(2.3) is clear from the definition of $. Since -r is a control variable ,

the events 
~~~~~~~~~~~~~~~ 

s -r} are 7(t)-measurable for ta (t 1~t2,...~t~)

and hence, property (2.4) -Is satisfied. Now let us show that u r n
k-’—

exists and is equal to r, so that -r e SR(o). Consider the events {t . r}

and {t- ic -r} as follows. If t�r (u), then by cQnstruction we have $(t,w ) z t

and hence, u r n  $k(t,w)z t. If ‘t<-r (w), then by construction we have
k-’—

t<$ (t,w) �T (w). If t* .(t1~t2~...~t~) and t(w) ~~~~~~~~~~~~~~~~~~

~~~~~ 
I Tr>ITT I11 

Hence ~~~t,4zt ~~
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and lim $k(t,~)aT(~). Thus, we see that u r n  $k(t ,W)=t (W) whenever
k-”~ k-am kts-r (w). In particular, we must have that l im$ ( o ) z t .  It follows

k-ac.
that -r is strongly reachable from o.

To show the converse, assume that -r is reachable from a. We must

show that {t’ � -r} Is 7(t)—measurable for ta  (t1~t2~...~t~) and t ’ ( t1~t2....~-t~. 
-

In I. First suppose that r Is finitely reachable fro’no so that r * $ k (o)

for some decision function $ and some integer k�0. Thus, we have

k
(2.27) (t~~~r} 

a u {$~(o)~~t,  tl �,i+1 ( o ) }
ja()

As we proved in Theorem 1, •J(0) is a stopping time for each j  and hence

is F(s)-measurable anr~ hence 7(t)—measurable for all sst.

Since $ Is a decision function, the event {t’ �4(s)} Is F(s)-measurable,

and hence 7(t)-measurable for s~ t. We can write

(2.28) {~
3 (o) � t ,  t’ ~~i+1(0)}~ u ({~i(0).s } ri {t ’ � c p ( s ) } )

- s�t

and thus, the event {~~ ( o ) �t , t$ 
~~

.i+1(0)} must be 7(t)-measurable. From

(2.27) It follows that (V s -r} is also 7(t)-measurable , and consequently,
each -r in FR(o) Is a control variable.

To sea that -r in R(o) are also control variables, let ~ a

sequence in FR(o) which converges to -r In the sense of (2.8). For each k

we have

(2.29) {t’ ir~} t~ (V �-r } c { r s r k}

- 
________



__ _  
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We have just showed that (V �r k} is 7(t)-measurable for each k. Ar-

S 

- guing from (2.29) as we did in part (iv) of the proof of Theorem 1, we

deduce that (V s -r} is also 7(t)-measurable. Hence, each -r in R (o)  Is a

control variable.

Thus, we have shown that all control variables are strongly reachable

from o and that all t which are reachable from o are control variables.

Using the result SR(o) cR(e) from Theorem 1, we see that in fact SR(o) a

R(o) In this case and the notions of strongly reachable, reachable and

control variable are equivalent. -

2.3 Optimal Stopping Problem and Converse Optional Sampling

We now turn to proving the converse optional sampl ing theorem, namely

that os(o) c R(o). To do this we first consider an optimal stopping prob-

lem, defined on partially ordered Index sets, which Is a generalization

of Haggatrom ’s (1966) stopping problem on trees.

S Theorem 4
Suppose that the mapping c : Tx~2-~R Is uniformly bounded and adapted

to {~(t) : tc T}. For any random function -r : Q-’-T define -~r(t ,t) as

(2.30 ) ~(t,r) E(c(-r)IP(t))

Define ii(t) as

(2.31) it(t) a ess inf{ir(t,-r) : Tc R ( t )}

and let ir denote the mapping from Tx~ toR defined by (2.31). Then iT

satisfies the equation

S ~~~ -‘ j A ~~~~ - _~~ _ ._ _ ~~~~~ . C_Ss ~ __S ~ --
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(2.32) ir(t) a inf(E(,r(s)IF(t)), c(t) : tcS }

for all t in 1. Furthermore, for any stopping time a and c > 0 there

exists -r in SR(a) such that

(2.33) ir(a) + c �

Proof -

Note first that

(2.34) ess Inf{ir(t,-r) : - r c R (a)} a ess inf{-~r(t,- r) : FR (a) }

To see that this is true let -r be an element of R( a)  and let {
~
rk} be a

sequence of FR(a) converging to T as in (2.8). It Is easy to see that

c(rk)+c(r) in probability, and hence, there exists a subsequence of

which converges almost surely to c(r). Let IC (tk)} also denote
this subsequence. Since c Is uniformly bounded, the conditional expec-

tations lr(t,-rk) ~Jefined in (2.30) must converge to 1T(t,r) almost surely.
S - 

- The equality of (2.34) follows from this.

Define 11(t) as

(2.35) 11(t) a Inf(E(1T(s)IP(t)), c(t) : t<s}

W will prove that 1T(t) a ff(t) In order to demonstrate (2.32). It is easy

to show that ir(t) �*(t). In order to do this, let -r be an element of

I~(a) and let ru. $k(t) for the decision function $. Then the following

S relation must be true.

(2.36) c( r) a 
JS 

c(~~~ (s)) 1$(t)~s 
+ c(t) 1$(t)at

H 

_  _  

__ _
S - - _______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~ SS~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - S
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Note that $~~
1(s) E F R(s)  for each S such that t < s. Thus, from (2.34)

and (2.31) we see that

(2.37) E(c($k~~(s))IF(s)) � if(s)

and from the definition (2.35) of 11(t) we must have

(2.38) E(c(,k4(s))IP(t)) ~ 11(t)

for each s such that t<s. Conditioning (2.36) with respect to F(t) and

using (2.38) , we obtain

(2.39) E(c(T)J F(t)) � 11(t)

Since -r c FR (t) in (2.39) was chosen arbitrarily, the relation (2.31) and

(2.34) Imply that IT(t) ~ if(t).

The opposite inequality, ir(t)�- if( t), Is sl ightly harder to prove, but

it follows easily once we show that (2.33) is true for constant stopping

times. As shown in Chow, Siegmond and Robblns (1971), the essential

infjjivjin (ess lnf) has the property that it is almost surely equal to an

infimum over a countablecollection of random variables. Using (2.31) and

(2.34), we see that there is a countable set {rk} of random functions in

PR (t)  such that

(2.40) ii(t) a inf{1r(t,-rk) : k�1 }

In Theorem 1 we proved that PR (t)  cSR(t) and therefore, there exist de- —

cision functions •k such that for each k

(2.41) u r n  $~(t) • rkfl4c. 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
_ S~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -S ~~~~~~~~~~—- - -  -~ - --~~~~~~ - -—
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Define the Integer-valued random function k* to be the least Integer

k�1 such that 1f(t)+c
~~

Ir(t,rk). The random function k* is thus defined

almost everywhere and it is 7(t)-measurable. Let $ be defined so that

•(r)ar for all r such that t%r, and such that ,(r)sq~~(r) for t�r. 
—

Then the mapping •: TxQ -~T Is defined for almost all w and by defining

•(r ,w) a r where k*(~g) is not defined, one easily sees that • € 1’. Moreover,

(2.42) u r n  •“(t)

Hence, k* must be in SR(t) and by definition of k* it must be true that
1T(t) +C�if(t,rk*).

We can now show ir(t)~~if(t) as follows. For c>0 and for s such that

t- cs, choose t in SR (s) such that

(2.43) iT(s) + C � iT(s,-r)

Let - ra limq~ (s ) for •ED.  Define a new decision function ~
, as ~,(r) =$(r)k.,c. S S

for ssr ,  ig(t) s and ~i(r)ar for all other r. Then u r n  ‘(t)=lim •~(s)
k-~c.

and hence, -r is an element of SR(t) and also an element of R ( t ) .  From

(2.43) it follows that

(2.44) if(s) + e ~ E(c(T)IF(s))

Conditioning (2.44) with respect to 7(t) we obtain E (-Ii (s)IF (t))+s�-ir (t,-r)

and consequently, E(1c(s)IF(t))+C�ic(t). Since C was arbitrary we obtain

E(it(s)Ip(t))�,r(t). It is clear that c(t)�tv (t), and thus, we have 
S

11(t)a-ir(t). -

t To finish the proof we must demonstrate the Inequality (2.33)~ for

S - S~-5S~~~~ -5-5 S S - 5 - 5— -  - --5’- -5 —5------— SS— — ~~~~ 5-
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arbitrary stopping times a. From above we know that for each t there

exists r~~ SR(t) such that’

(2.45) ir(t) + C � 1T(t ,r
t
)

for a given e)O. Let $teD be such that

(2.46) llm ~~(t) 
a

k-”.

Define a new decision function $ such that s(t) =$r(t) If rst and aar,

and $(t)at if a%t. In this case the l imit -r~~lim ~
k(0) exists and Is

k-”.
equal to lirn $~(r) whenever a r .  Thus, -r~~SR(a) and from (2.45) itr
follows that ir(a)+e�lr(a,T).

Theorem 5

If a is a stopping time on T,~ with respect to {i(t) tE i} then

05(a) ~R(a)

Proof 
S

We have already shown in Theorem E that R(a) c OS(a) . Thus, it

suffices to show OS(o)cR(a). Suppose that -r c 03(a). We apply Theorem 4

to the optimal stopping problem with cost function c(t) ~~~ It follows

that ii in (2.31) is a submartingale uniformly bounded by 1. Since we

assume that - r e OS (a) , the opticnal sampling inequality (2.2) is true for

X zir and thus E(ir(-r)lP(a))�n(a). Since ir(t) is clearly 0 by definition

of c and since ii(a) �0, we have ir(a) aQ~ From (2.33) there exist rk ~

SR(a) such that for each positive Integer k

(2.47) ii(a) + -
~~
. � if(G,t~~)

— —~~~ — - — ~~~~~~~~~~~ — - —
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Noting that ir(a) aG and n(a,r k) a P(tk 
a -rIF(a) ) In (2.47), we obtain the

following result: 
-

(2.48) P(tk a-r IF(a)) � 
~~

. 
S

Taking the expectation of (2.48) gives P(r k �t) �
~

-. Since each rk is

strongly reachable from a, according to Theorem 1 It is also reachable

from a, and hence there are ~~~~ FR(a) such that P(-r~ ar k) ~~~~ It follows

that P(-r~st)�~ for each k and consequently -r€R(a).

The following corollary, which follows from (2.48), improves the ap-
proximation (2.8).

Corollary 5 
5 5

For each rc R(a) there exist rk E SR(a) such that

(2.49) u r n  P(tk a-rIF(a)) 
3 0

k.p’. -

where the convergence in (2.49) is uniform on a set of probability one.

When the infimum In (2.32) is a minimum , we may refine the results

of Theorem 5 and In some cases prove that all reachable random functions

are In fact strongly reachable. We present these results below in Theorem

7 and Its corollaries. The following simple theorem shows that the -In-

S fiimim is actually a minimum for a large class of Index sets . If T,�

is a partially ordered set and tE T, then we say that s Is an iimiedlate

successor of t and write t.s if t� s and -If t � r � s for no r other than

tor s.

Theorem 6

Suppose that the partially ordered Index set T,� In Theorem 4 Is such 
S

-5- - —5’ — - — - - —5 —-5-: - -—-- ~~~~~~~~~~~~~~~~~~~~ - ~~~-~~ --- _5-—-—--5’-—-5”__—-—--5 - - S -~~~~~~~5’-~~~~-5--5S- --— ---—- — —~~—- --5-—- —- --- - 5 -
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that each t in T has at most a finite number of imediate successors.

Then the infimum in (2.32) is a minimum .

Proof

Note that since -~r Is a submartingale we have that E(-ir(s)IF(t))~
E ( n ( r ) I F ( t ) )  for each t�s�r. Since for each r such that t<r there is

an inmediate successor s of t such that s� r , we have

(2.50) inf{E(-ir(s)IF(t), c(t) : t— c s} inf{E(ir(s)IF(t), c(t) : t<.s} $
The infimum on the right hand side of (2.50) is taken over a finite set

of s by assumption, and consequently it is a minimum.

Theorem 7

Let a be a stopping time with respect to {F(t) : t c T }  and let iER(q).

Let i~’ be the uniformly bounded submartingale defined by (2.31) in Theorem 4

with the cost function c(t) = l-r~~. Suppose that there exists ~ such that

(2.51) 11(t) a E{n($(t))IF(t)} 
S

for each t and $(t) t if and only if -n(t) c(t ) . Then ~~ R(cp k(a) ) for

each k, and In particular , $k(a) ~ r for all k. Furthermore, whenever the

li mit lim.*
k(a) exists, It is equal to r. S

k-a’.
Proof

If p Is a stopping time, then from (2.51) it follows that

(2.52) 11(p) 3 E{1T(*(p))IF(P)}

S Letting p~~q~(a) successively for k �0 we see that {lr($k(a))} is a one

parameter martingale with respect to {7(~k(0))}• Since T E R (ø) Implies

I
- - - - - —- - --—-- -5’- - - —S
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that if(a) =0 and since iT �0, we see that iT($k(a)) 0 also for each k.

Using the same argument as in Theorem S, ~ie deduce that TER( ~~(a)). It

follows that $k(a) ~~-t a.s. from the definition of R(~~(a)). Finally,

to prove the last assertion of the theorem suppose that u r n  ~~a) existsk-’’.
so that • (a) , ~

1(a) for some k. The condition that •(t) = t if and

only if -ir(t)= c(t) implies that if($k(a))ac(4~(a)). Since

It follows that c(4~(a))a0 and hence, •
1
~(a) ’- r . The following corol-

laries are ininediate consequences of Theorems 6 and 7.

Corollary 7.1

Assume the same conditions as in Theorem 7. Suppose that the index

set T has the property that for any s, t in I with s<t, there is no

infinite sequence {r~} in I such that s<r~
-<r
~+1

<t for all n. Then for

- 
- 

the decision function • satisfying (2.51) we have

(2.53) u r n  •
k() = -r

k-”.

Corollary 7.2

If the partially ordered index set T,~ is the set of integer n-tuples Z”

with the coordinate-wise partial ordering, then SR(a) R(a).

Corollary 7.3

If the partially ordered index set T,� is finite, then PR(a) 5R( c~) R(a) .

S S -
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3. Conditional Independence and Optional Sampling

For particular types of index sets T,� and increasing families

{F(t) : tc 1) it may be true that for any pair -r ,a of stopping times with

a �-r that -r is reachable from a. For example, this is true if T,� is

countable and linearly ordered. In this section we present two other

general cases where this is also true and where the index set is not

linearly ordered. 
S

To begin we make two assumptions, one concerning the index set T,~
and the other concerning the col lection {F(t) : t€ T} of a-fields. Namely,

assume that for any two elements t, s of I there is a greatest lower

bound tA s of t and s with respect to the partial ordering of I. This

is true, for example, if T,� is a tree, as defined in Section 2, or if

T,s is a lattice such as or R’~ with the coordinate-wise partial or-

dering. In the second case , the 1th coordinate of tAs is min{t~~s~}

where t1 and S1 are the 1
th coordinates of t and s respectively. The

second assumption we make is that {~(t) : t€ T} satisfies the following

S conditional independence property.

Definition 5

The increasing family {P(t) : tE T} satisfies the conditional in-

dependence property if for each S and t in I, the a-fields F(s) and 7(t)

are conditionally independent given F(sAt).

This conditional Independence property was defined for the case of

T=R~ by Cairol i and Walsh (1975) In their study of stochastic integrals

on the plane. The multiparameter Wiener process on defined by Park (1970)

—- -~~ -5-~~-5~’-~~ -5 ------ ---- ‘5’ ~~~~~~~~~~ 5’ 5’~~~~~~~~~~5’~~~~~~~~~~~~~~~~~~
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generates a-fields which satisfy the conditional independence property.

- - - If T,� is an index set with the property that any two elements of T have

a greatest lower bound , then-we can construct a simple example of a

collection of a-fields with the conditiona l independence property as

follows. Let {x(t) : t€ T} be a collection of independent random variables

and let P(t) be the a-field generated by the collection fx(s) : $ �t} of

random variables. It -Is not hard to see that the collect-ion {r(t) : tE T}

so defined satisfies Definition 5.

We will show that if T,s Is either a tree or with the coordinate-

wise ordering and if {~ ( t)  : tE T} has the conditional independence pro-

perty, then SR(a) a 1S~’(a) for all stopping times a. The first case we

consider is that for which T,� is a countable tree as defined in 5cc-

tion 2.

Theorem 8

Suppose that I,s is a countable tree and that the increasing family

{r(t) : tc T} has the conditional independence property. If a is any

stopping time, then SR(a) 5T(a) .

Proof

Having proved that SR(a) c ,~ ’(a) In Theorem 1, we need only prove

BT(a) c32?(a). For a given stopping time -r we will construct a decision

function 
~ 
such that for any stopping time a with a~~T, the limI t Urnk-.’.

exists and Is equal to -r.

Fix t -In I and define •(t): c~-..T as follows. For each ininediate

successor s of t, let As denote the p (t)-measurable event

- ~~- 
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(3.1) A5 {w : P ( s � t I F ( t ) ) >01

Note that for each s the definition (3.1) implies that

(3.2) P(A~n {s � r})

Suppose that S and S are invnedlate successors of t with sas ’, and let

ssr and s’�r ’-. Because 1,~ Is a tree, we must have rar ’ and rAr’ a
S 

SAS ’ =t. Thus, the conditional independence property impl ies that

(3.3) P(rar~F(t)) P(T=r hIp (t)) = 0

SunnIng (3.3) over all r,r’ such that s � r and s’ ~r’ gives

(3.4) P(ssrfF(t)) P(s’ �r (F(t)) 0

From (3.4) and (3.1) It follows that for each sas ’

~ I
(3.5) P(A5n A51) O

Using the assumed completeness of F(t) and redefining the Aeon sets

of measure zero If necessary, we deduce from (3.2) and (3.5) that

(3.6) {ss—r } c A~

(3.7) A5n A~1 a

for all s,s’ such that t-.s,s’ and S as ’. Let At denote the event in

p(t) defined by

(3.8) At 
a ~ - {A 5 : t.s}) u {ra t}

j  ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -  S
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(3.9) •(t,w) t if w€ At
(3.10) •(t ,w) S if wc A5 

—~ At

Property (3.7) and the definition (3.8) insure that •(t) Is a well-defined

function. Property (3.6) insures that if t� r , then •(t)~~t. Further-

more, if t~~-r and •(t)=t, then t=r. If a is any stopping time such that

a�-r , then •~‘(a)�-r for each k. Since T,� is a tree and has the property

mentioned in Corollary 7.1, the limit u r n  ~~(a) exists almost surely. By

construction this limit p is such that p-� -r and $ ( p ) = p .  Consequently,

p -r.

The property of a tree that makes Theorem 8 possibl e is that for each 
S

s,s’ such that t.s,s’ and sa- s’ we have {r : s� r} n {r’ : s’ � r’} = 0.

This property will not hold for more general partially ordered index

sets such as T=Z’1. Nevertheless, we can adapt the proof of Theorem 8

to the more general case of Ta Z2.

S Theorem 9

Suppose that T Z 2 and~ Is the coordinate-wise partial ordEring of

Z2. Furthermore, suppose that the increasing family—{F(t) : t€ T} satis-

fies the conditional Independence property. If a is any stopping time, 
- I!

then S R ( a ) = 3 F ( a) .

Proof

As in Theorem 8, for a given stopping time i we will construct a

decision function ~ such that urn •
k(a)aT for any stopping time a with

_ _ _ _ _ _ _ _ _ _ _ _  - - -- -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~ - -~~~~~~~--~~~~~~~~~~ 5 -- Si
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Fix t= (t1,t2) in and define •(t) : c’2-.Z2 as follows. Oefine’the

events K1 and as

(3.11) K1 
• u {t . (t1~t2+n)}fl).0

(3.12) (2 a u {.~a (t1+m,t2)}
- -

The conditional independence property Implies that F ( ( t 1, t2 + n ) )  and

F ( ( t 1+m,t2) )  are conditionally Independent given F((t11t2)) for any

m,n�0 . Thus, we have

(3.13) P(t = (t1,t2 +n)jP(t)) P(t a (t1+m ,t2)(F(t)) 0

for all n,m>0. From (3.13), (3.11) and (3.12) It follows that

r-4 1 (3.14) P(K
1

1P( t ) )  P(K~ F(t)) 
a

Define the P(t)-measurable events A(t1,~~+l) 
and A(t1+j,~~) 

as

(3.15) A(t1,~~+l) {w : P(K11P(t))>O}

(3.16) A(t1+l,~~) 
a A(t1,.~+l)

It is not difficult to see that 
-

(3.17) P(A(t1,.~+l)
n K1)

S and that

S 
S - -

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ S_-5~~~~~~~~~~ -.-- ‘S
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(3 18) P(A(t,~~+l) ~~

From thi s point on the proof follows Theorem 8. Using the assumed

completeness of F(t) and redefining A(t t +l)and A(t + lt) on sets of

measure zero if necessary, we deduce from (3.17) and (3.18) that

(3.19) K1 c A(t1,~~+l) -

(3.20) 
~2 ~ 

A(t1+l,~~) 
- -

where A(t1,~~+l)
fl A(t1+l,~~)a0 and A(t ,t~+l)U A(t1+l,t2)~~~

. Let

A(t1,~~)
a {.r= (t1,t2)} and define s((t1,t2)) as: 

—

(3.21) $((t1,t2),w) (t1,t2) if W E A (tt )

(3.22) •((t1,t2),w) (t1+1,t2) if w€ A (t1+l,~~)
_A
(t,~~) 

S

(3.23) $((t 11t2),W) a (t1,t2+1) if W (A (t11~~+l)
_A
(t1,t2)

For this decision function $k(a)�r for any stopping time a such that S

a� r. Since also has the property of Corollary 7.1, the limit Urn $k(a)
k-i’.

exists almost surely and is equal to r.

We cannot extend the proof of Theorem 9 to the case of T a z” for
n>2. The following example shows that In fact the result Is not generally

true for n>2. S

Example 4. R(a)s51’(a) when T— Z3 and when the conditional Independence

property holds true.

I
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Without loss of generality we construct the example for the index

set T defined as the Cartesian product {O,1} x 10,11 x {O, }, a subset of

Z3, namely the vertices of the unit cube. One àan easily extend this 
S

example to one on all of Z3 or to ~~ for some n > 3. Let ~~ : 1� I � 8}

with P({w1}) 
a.~ . for each 1, and let F be the collection of all subsets

of ~2. Define three random functions a, 
~~, y from ~ onto {0,1} as follows.

• a(~~) 
a a(i~~) 

a 
~~(~~~) a

a a(w6) 
a c~(~~) 

a a(w~) = 1

• ~
(
~

) • 8(w~) B(w8) a 1

S 

y(~~1
) a 

~~~~~~ 
• ‘y(w5) • ~y(~a7) 

a 0

a ‘r(w4) 
a 

~~
(
~~6
) • y(w8) 

a 1

It Is not difficult to check that a, B, y are independent random functions.

We can now define the a—fields {~(t) : t€T } in terms of these random

variables. Let F((0,0,0)) be the trivial a—field {I2,0}. The a—field

F((1,0,0)) Is generated by a, F((0,i,O)) Is generated by 
~~, 

F ( ( O ,O, 1) )  
S

is generated by y, F((i,i,0)) is generated by a and 8. F ( ( 1 ,0 ,3 .) )  Is

generated by a and y, P((0,],].)) is generated by B and y, and F ( ( 1 , 1, 1) )

is generated by all three random variables-—hence, F ( ( 1 , 1 , 1) ) •P .  Since

a, 8, and ~ ‘ are Independent, It is easy to check that (7(t) : t~ T} satis-

fies the conditional independence property.

DefIne a submartlngale X on T as follows. Let X((1,1,1))(w~)~
and let X( (1,1,1)Xw)•1 for 1*3,6. Define ~(t)~~0

a— -5-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---S 
- ‘~~~~~~~~~~~~~~~~ - ~~~~
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for - t* (1,1,1). To check that X Is a submartingale, it suffices to

show that E(XG,1,1))IF(t))�O, for ta (1,1,0), (1,0,])-, (0,1,1). A

simple calculation shows that E(X(1,1,1))JF((1,1,O)) is equal to 1 if

and it is equal to 0 if w~~w31w4,w5,w6. The other con-

ditional expectations are similar. 
-

Finally, define t(w) • (1,1,0) if c~~ w1,w2; let r(w) (1,0,1) If

let -r(w)a (O,1,1) if w•w4,w8; and let -r(w)~~(1,1,1) if

It is easy to check that -r is a stopping time. Let a• (0,0,0). Then

a simple calculation shows that

- 

E(X(-r)IF(a)) • E(X(- r)) a (_1)
~
. + (O)~ 

a 4 ~ Q z X(a)

Consequently, -r ~
‘ 03 (a) and from Theorem 2 it follows that -r ~R( a) .  Thus,

R (a)  a 52’ (a) .

To conclude the results of this paper we state an optional sampl ing

theorem whi ch follows easily from Theorems 8 and 9 and Theorem 2.

Theorem 10

Suppose that T,~ is either a countable tree, Z2 or R2. Let the in-

creasing family {~(t) : tcl} satisfy the conditional independence pro-

perty, and let X be a uniformly bounded submartingale with respect to this

Increasing family. If T — R 2 then also let X be right continuous In the

sense that

l im X(s) ~ X(t) for all ts-”-t , t~s

If a and -r are stopping times with as -r, then E(X(-r)IF(a)) � X(a).
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Proof

For li Z2 or I a tree the proof follows Iimnediately from Theorems

8, 9 and 2. For TaR 2 one proceeds as for by taking limits of stopping

times taking only finitely countable many values in R2 and using the

result for T• Z2. Since there are very few changes from the one—parameter

case, for example as given in Neveu (1965), we omit the proof. 

S --5 ’S-5S~~ -5*~~~~fl S~S__-5~~~ _~~~~~ S_ 1± ~~~~~~~~~~~~ —-——~ -j——— ~~—- - -~~~~ -5- -5- —-- — - ~~~——-~-——-- .~-5-- S S - - ~ S - S - S --S——S.



-~~ 

I -  •. 34

I ~
4. ConclusIons

We have shown that for a given pair a,-r of stopping times such that

as-r on a countable partially ordered set, the optional sampl ing inequality

(4.1) E (X ( - c) I F ( a ) )  � X(a)-

is true for all uniformly bounded submartingales X if and only i-f -r is

reachable from a. This result stands In sharp contrast to the martingale

results of Chow (1960) and Kurtz (1977).. If X is a uniformly bounded

martingale and if the Index set is directed, then (4.1) is true for any

stopping times o,c- such that as -r. Note that our result does not require

that the index set be directed.

Our characterization of the collection 03(a) of stopping times -r for

which (4.1) is true shows that optional sampling Is Intimately associated

with sequential sampl ing problems—-namely, reachable stopping times are

defined in terms of sequential decision functions as described In Section

2. Thus, even for the case of a partially ordered index set, the optional

sampling theorem is necessarily a one—parameter result. As we have shown

In Section 2, the optional sampling theorem Is true for general un iformly

bounded subuartingales if and only If the stopping times are reachable

and hence If and only if the theorem can be reduced to Its one-parameter

varsion.

In certain special cases discussed In Section 3 it is possible to

show that the optional sampling inequality (4.1) is true for all stopping

times and all uniformly bounded subnartlngales. To obtain such results

5. . ... ~~~~~~~~~~ —— —  — - -~~ - ——
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we assumed that the increasing family of a-fields satisfied a conditional

S independence property originally given by Cairol i and Walsh (1975). This

property -Is possessed by a-fields generated by multiparameter Wiener

processes, for example. Thus, we proved the optional sampling theorem

for the special cases when I is a tree or when T~~Z
2 or R2. The counter—

example of Section 3 shows that the theorem is not true for liZ3.

The preceding results completely characterize the situations in which

the optional sampling theorem is true with no restriction on the sub-

martingales other then uniform boundedness. If further restrictions are
S placed on the submartingales, it may be possibl e to obtain different

optional sampling results. For example, if X has a Doob decomposition~,

it Is easy to apply KLIrtZ’S (1977) result to show that (4.1) Is satisfied

for all stopping times. Thus, suppose X(t)— M(t)+A(t) where M is a

martingale and A is an increasing process in the sense that A(s) s A(t)

if sst in the partially ordered Index set. Then if the index set Is

S 
directed, Kurtz’s result impl Ies that E(M(-r)Ip (a))=M(a) for all stopping

times a,-v such that as-r. It is clear that A(a)s A(-r) and hence

E(A(-r)jF(a))�A(a). Thus, E (X(-r)JF(a))�X(a) is also true.

Of course, the fact that the optional sampl ing theorem is not generally

true In the case of partially ordered index sets means that not all sub—

inartingales have such Doob decompositions. Indeed, if -r is not reachable

from some stopping time. ~ where aS -r , then the submartingale ‘r of Theorem 5

has no Doob decomposition. For otherwise (4.1) would be true for X a ii

I 
and the argument of Theorem 5 would imply that -r is reachable from a, a

contradiction.
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Despite the fact that reachability is a rather stringent condition

on stopping times taking values in partially ordered sets, there are some

cases in which the stopping times naturally have this reachability pro-

perty. Washburn (1979) has considered optional stopping problems of

the type described In Section 2.3 for which the index set I is either

or a collection of subsets of R2. In these problems the stopping

times are reachable as defined here provided that they take at most

countably many values in the partially ordered index set. Since the

Index sets in these and other appl ications of interest are nondenumerable,

it is Important to extend the concept of reachability and the results

of Section 2 to uncountable index sets. In particular , one would like

to extend the results of Section 2 to the case where decisions are made

continuously. Thus, one must make sense of differential equations of the

- form

(4.2) ~~~~~~~~ •(r(s))

where $ is a decision function and s-’ -r(s) is a continuous trajectory of

stopping times. In (4.2) we assume that the time set is some linear space
S 

such as R”. In order that the path s.-r(s) should increase we must

assume that the components of 
~ 
are all nonnegative.

S 

- 
The previous discussion has been carried out only at the heuristic

level and all the conjectures discussed will require rigorous proof. Note -

that Kurtz (1978) has Investigated a class of continuous parameter stop-

ping times which satisfy a differential equation of the form (4.2).

Kurtz (1978) investigated thee ‘ultiparameter stopping times while

-555 -555-5-5-55 ~~~~~ ---55 — 5 - S ~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -5-5-5SS -5~~~~~~~~~ -5~-5~ ~~~~~~~~~ — ~~~~~~~~~~~~~~~
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studying processes X(t) (here t E R 1 ) of the form

S N (t
(4.3) x(-t) X(O) + ~ ~~W( ( ~~(X(s))ds)• j al 

~0 
S

where W are independent Wiener processes. The ~
th component of the

stoppIng times -r(t) is given by

f•t
(4.4) T1(t) 1 81(X(s))ds

Note that -r .1 represents a random time change for the Wiener process W1.
It seems l ikely that the stopping time -r defined by (4.4) will be reachable

in some sense appropriate for the index set R~ and hence that the optional
I 

sampling theorem for subnartlngales is true for these stopping times.

Note that Kurtz (1978) used the martingale version of theorem which he

had proved earlier in Kurtz (1977).
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zu. Abstract continued. -

conditional independence property is satisfied in cases where the
submartingales and stopping times are measurable with respect to the -

~~

two—parameter Wiener process. ~A counterexasnple shows that the optional -

sampling result is false for R when n72 even if the conditional
independence property is satisfied. -
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7. - Footnotes

1. A directed set is a partially ordered set wi th the additional property

J that every two elements in the set have a coimion upper bound.

-

- 2. See SectIon 2 for these definltJons.

3. The reals and nonnegative reals are denoted by R and R+, respectively,

and the integers are denoted by Z. The Cartesian products are denoted

Rn, R~ and ~~~~ respectively.

4. See Doob (1953) for the discrete Index version or Meyer (1966) for

the continuous index version.
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